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INTRODUCTION 

The investigation of the vibrational relaxation of diatomic molecules at high vibra- 
tional temperature and low gas temperature is due to the development of certain types of 
lasers (in particular, CO lasers). The distributions of molecules over the vibrational 
levels and the rates of vibrational relaxation have been computed numerically in a number 
of studies (review [i]). In the presence of strong vibrational excitation the distribution 
over the levels contains a slowly decaying part (plateau). An analytical description of a 
distribution with a plateau is given in [2], which is based on the classical oscillator mod- 
el. Later, the vibrational relaxation of diatomic molecules under the conditions of exis- 
tence of a plateau was investigated in [3, 4], where analytical expressions for the rate of 
change of the number of quanta were derived. In [3, 4] the rate of dissipation of the vi- 
brationalenergy was determined by summing the contributions from the vibrational-- transla- 
tional exchange processes (V--T process) in each vibrational level. 

The upper vibrational levels, where the rates of vibrational-- translational and vibra- 
tional--vlbrational exchanges (V--V process) become comparable (end of the plateau), make 
the main contribution. Thus, the direct summation requires a rather accurate computation of 
the distribution in the region where V--V processes are important; this presents a complex 
problem that does not have a universal solution. However, in the case where the rate of 
V--T relaxation is determined by the upper vibrational levels, there is no need for an ex- 
plicit computation of the vibrational distribution in this region, since the rate of relaxa- 
tion can be related to the magnitude of the upward flux of quanta along the vibrational levels 
[2]. This approach has been used in [5] for deriving the formula for the rate of dissipation 
of the vibrational energy in polyatomlc molecules. In the present work the quantum flux is 
computed in the discrete space of vibrational numbers, which gives a more exact formula in 
the case of a steep dependence of the rate of V--V exchange on the energy defect. The re- 
suits are compared with earlier known formulas and with ~xperiment. The analytical results 
are compared with the numerical solution. 

I. Equation of Vibrational Energy. We introduce a quantum flux in section k of the axis 
of vibrational numbers, given by the formula 

/r ~-m--1 

Ilk = ~X" ,~\" S~m, 
m ~ L  u = h  

where the number of quanta transferred from transition (u -- m) -- (u -- m + i) to transition 
(u) - (u + l) is 

, - -  ' u + l . ' . . m ) ,  u ~ m ,  t Q , , , n  ( N ~ , N ~ _  ,,~ :_ , ' e - 2bm :V ,,r 

S , ,m  = {0, u < m .  

Here Qum is the rate constant of the V--V process (u) + (u -- m + i) + (u + i) + (u -- m); 
b = AE/T; AE is the anharmonicity; T is the gas temperature; and N u is the population of 
the u-th level. The difference of the quantum fluxes in adjacent sections is 
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II~, - IL+~ =: ~ (&,,,  - S~+.,,,.) = ~ &.,. 
m-'>~l m 

In the last equation we have made use of the fact that 

S h , - r a  = - - S h + m ,  rn 

( i . i )  

and the summation is extended over negative values of m. The expression on the right-hand 
side of (i.I) represents the particle flux between adjacent levels (the difference in the 
numbers of direct and inverse transitions) due to V--V processes. 

Let us consider the case of stationary excitation of molecules by electrons (V--E pro- 
cesses) in an electrical discharge. In the absence of dissipation, the total particle flux 
between the levels; which is composed of V--V, V--T, and V--E fluxes, is equal to zero. Then 
Eq. (i.I) shows that the difference of the quantum fluxes in adjacent sections is equal (but 
of opposite sign) to the particle flux caused by V--E and V--T processes. Thus, V--E and 
V--T processes are the sources of the quanta. 

The excitation by electrons is related mainly to the lower vibrational levels. On the 
other hand, for strong vibrational excitation quenching occurs at upper levels where the rate 
of V--T processes is large. Therefore, the distributed sources may be replaced by some ef- 
fective sources acting at the boundary of the investigated range of vibrational numbers. In 
this case the equation of the vibrational energy has the following form: 

dE~dr = IV--~H, (1.2) 

where E is the vibrational energy, W is the pumping, and ~H is the flux of vibrational ener- 
gy associated with the quantum flux. 

Taking the distribution [2] (corresponding to constant quantum flux) 

Ar~, = No exp ( - - b ~  2 - -  l /2)(~/k)  

in the region of the plateau, for large k we have 

m>~i (1.3) 

In the expression for N, ~ = 1/2 + mT/2TIAE is the number of the level corresponding to the 
minimum of Treanor distribution, ~ is the vibrational quantum, and TI is the excitation 
temperature of the first level. In (1.3) we have made use of the representation of the V--V 
exchange constant in the form 

Q=m = Qoo(u 7- l ) (u  - m + t ) f (m) ,  0 ~ m ~ u, ( 1 . 4 )  

w h e r e  Qoo i s  t h e  r a t e  c o n s t a n t  o f  d e f e c t l e s s  e x c h a n g e  (0 )  + (1)  ~ (1)  + ( 0 ) .  

For exchange in the presence of short-range interaction the factor f(m) is of the form 
Ill 

/(m) = e-6m. ( l .  5) 

S o m e t i m e s  ( 1 . 5 )  c a n  b e  u s e d  a l s o  f o r  V - - V  e x c h a n g e  i n  t h e  c a s e  o f  l o n g - r a n g e  i n t e r a c t i o n .  I n  
p a r t i c u l a r ,  a c c o r d i n g  t o  t h e  e x p e r i m e n t a l  d a t a  [ 6 ,  7] f o r  CO, t h e  d e p e n d e n c e  on  t h e  e n e r g y  
d e f e c t  i n  t h e  r e g i o n ,  g i v i n g  t h e  m a i n  c o n t r i b u t i o n  t o  t h e  sum o v e r  m i n  ( 1 . 3 ) ,  c an  b e  t a k e n  
a s  e x p o n e n t i a l  w i t h  a r e a s o n a b l e  a c c u r a c y .  U s i n g  ( 1 . 5 ) ,  we h a v e  

-2 2 [ e5 
= Q00 ~ @6--1)2 

e6+2b  ] 
(e~+2b-- i)" " (i. 6) 

Formula (1.6) is more universal than that of [4] describing the vibrational relaxation 
only in the one-component gas of diatomic homonucleus molecules. Computations show that the 
rates of vibrational relaxation, determined from (1.6) and from the formula from [4], are in 
satisfactory agreement within the limits of applicability of the latter. In the range of 
small b and ~ the expression for the energy flux becomes 
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TABLE 1 

Variant T,*K 

i49 
i32 
230 
230 

T1 exp, *K 

24OO 
2450 

3400 (10OO) 
3300 (3900) 

W , 

W/ m3 
0,t5 
0,12 
038 
0,25 

TlCalc,, K 

2400 
2700 
4300 
4200 

~ f l  = ~QooN~a ~ �9 4b/5 S. ( 1 . 7 )  

We n o t e  t h a t  ( 1 . 7 )  i s  s i m i l a r  i n  fo rm to  t h e  c o r r e s p o n d i n g  e x p r e s s i o n  f rom [ 3 ] ;  h o w e v e r ,  t h e  
n,r,~rical factor in [3] is i0 times larger (this difference is in part -- by a factor of 1.5 -- 
due to the fact that a slightly different dependence f(m) is used in [3]). 

According to (1.6), the magnitude of the quantum flux is determined by the population 
of the level corresponding to the Treanor minimum. In the presence of distributed quenching 
(for example, diffusion, emission) leading to a decrease of the quantum flux with the in- 
crease of the vibrational number, the slope at the plateau increases. However, the popula- 
tion at the Treanor minimum does not change significantly. Therefore, formula (1.6) describes 
approximately the magnitude of the quantum flux in the neighborhood of the Treanor minimum 
and in the presence of quenching at the plateau. The quenching in the Treanor region must be 
taken into consideration directly in the energy equation. In this case, in (1.2) W must be 
taken as the difference between the pumping Wp and quenching Wq at the Treanor minimum. Equa- 
tion (1.2) offers the possibility of determinlng the temperature Tx corresponding to the vibra- 
tional distribution from the known value of the vibrational pumping. 

The available information enables us to make a comparison with the experiment. In [8] 
the vibrational distribution in CO has been measured in a wide range of conditions from the 
amplification factor at rotatlonal--vibratlonal transitions. For known electron density and 
temperature the vibrational pumping is found from the data of [9]. Theelectron density at 
the axis of the discharge is determined from the current and the elastic scattering constant 
of electrons in helium (it is assumed that the electron density profile along the radius of 
the tube is of Bessel type), while the electron temperature is found from the energy balance. 
Under the conditions of the experiment [8] quenching at the Treanor minimum is significant 
only at low pressures (p = 3 mm Hg) and is due to the diffusion of the excited molecules to 
the walls. The experimental data from [i0] show that under such conditions the characteris- 
tic quenching period due to diffusion is independent of the accommodation coefficient and is 
equal to R2/6D, where R is the radius of the tube and D is the diffusion coefficient. The 
constants Qoo and ~ were determined from the experimental data of [6]. For variants I and 2, 
Qoo = 3.4"10 -x2 cma/sec and 6 -I = 1.5; for variants 3 and 4, Qoo = 9.1"10 -~= cmS/sec and 6-~ 
= 1.5, which corresponds to the data of [6] for T = i00 and 250~ A comparison of the ex- 
perimental and computed values of TI is shown in Table i. In variants 3 and 4 the values of 
the vibrational temperature, computed with the total width of the spectral line taken into 
consideration, are shown in parentheses (in [8] only the impact width is considered for these 
variants). Considering the approximate nature of the comparison, on the whole the agree- 
ment should be regarded as satisfactory. 

2. Vibrational Relaxation. The case of relaxation of the vibrational distribution in 
time requires special investigation, since here there is a downward particle flux through the 
vibrational levels and the magnitude of this flux is proportional to the rate of relaxation. 
The presence of this flux leads (in the absence of distributed quenching) to a change of the 
quantum flux along the plateau, which, in turn, causes a change in the rate of quenching at 
the end of the plateau. Thus, it becomes necessary to consider the backlash effect of the 
distribution relaxation rate on the distribution itself, i.e., to the introduce a correction 
to the basic quaBistationary approximation. 

In the quasistationary stage the plateau relaxes as a whole. In this case we have 

d i n  Nh/d t  = - - y  ( k ~ . a ) ,  ( 2 . 1 )  

where 
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? = --(d In Nk/da)(do6dQ)(dQ/dt)  = I I /NQ(v ) ( !  -~ a); 

a = (dQ(t)/do:)/(dQ(w/do:) ~_ Q(tUQ(v+a(I - e-~-vc9. 

(2.2) 

(2.3) 

Here Q = Q(t) + Q(p), Q(t) = (eaba - i) -I, and Q(p) = ~Na(n -- a)/Nare, respectively, the 
total number of quanta, the number of quanta in the Treanor region, and the number of quanta 
at the plateau per molecule; N is the density of the molecules. In (2.2) we have made use of 
the equation NdQ/dt = -- ~. The coordinate of the end of the plateau is n = ~V_T-11n(8bQoox 
ana~ V _ T/P~o~3), where the probability of V -- T quenching is 

Pk+l, h = Plo( k -]- t)e ~ V--Tk ( 2 . 4 )  

Only the basic exponential dependence is taken into consideration in differentiation with re- 
spect to a in (2.2). The quasistationarity results from the fact that the relaxation time 
of the population of the k-th level ~Nk/~ is much smaller than y-:. 

From the balance equation 

dN~/dt  = ] h - l , ~  - -  ]h ,  h+l,  ( 2 . 5 )  

where Jk-~, ~ is the particle flux in the (k -- i) -- k transition, we get 

n 

]h--t.h = --  ? ~ N~. (2 .6 )  
h 

In  d e r i v i n g  ( 2 .6 )  we have  t a k e n  i n t o  c o n s i d e r a t i o n  t h a t  t h e  f l u x  J n - ~ , n  i s  s m a l l  due to  r a p i d  
decay  o f  t h e  d i s t r i b u t i o n  f o r  k > n.  E x p r e s s i n g  t h e  p a r t i c l e  f l u x  i n  t h e  form o f  t h e  d i v e r -  
gence  o f  t h e  quantum f l u x ,  we g e t  

Hd/dk  = ? ~ N h d k  (k > a). (2 .7 )  
k 

For k = a the magnitude of the flux is given by formula (1.6). It is evident from (2.7) that 
the quantum flux increases toward the end of the plateau, which causes an enhancement of the 
relaxation. The main change in the quantum flux occurs in some neighborhood of the Treanor 
minimum. Integrating (2.7), we get 

I I .  = H~ + ?(NQ<~; - -  aN(~;), (2.8) 
where 

n 

Q(P) = (l /N) j' kNhdk;  N (v) = N~dk.  
r 05 

(2.9) 

We introduce a function <k = Hk/Ha �9 Since on the plateau ~k ~ k2Nk 2, we have N k = (~Na/k) x 
K~k" The consideration of the enhancement of the relaxation amounts to a replacement of 
by <H a in (2.2), where K = <n" Substituting (2.2) into (2.8), we obtain the equation for<, from 
which we get 

• = (1 + a)/(aNCw /NQO; + a). (2 .10 )  

The main change in the function K~ k occurs in the neighborhood of k = a, giving a small con- 
tribution to the integral in (2.9). Therefore, a correction factor f~-~ appears in the expres- 
sions for Q(p) and N(P) (in comparison with the standard case). Taking this fact into con- 
sideration, for small values of a from (2.10) we get 

• = (nlo~ - -  l)/ln (nice). (2.11) 

An explicit form of the distribution can be obtained by substituting the unperturbed distri- 
bution into the integral on the right-hand side of (2.7) as a first approximation. For small 
values of a we have 

N~ = (aNcJk ) l / ' [ ( k /a ) ( ln  (n/k) -t- i )  - -  t ] / l n  (n/a) ,  (cr < k < n ) .  (2 .12 )  
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It is evident from (2.10) that K differs from unity noticeably only in the case of small 
a when the change in the number of quanta with time is associated mainly with the plateau. 
For small a the correction factor for the quantum flux may reach a few times unity, i.e., 
for a giVen vibrational temperature TI the rate of dissipation of the vibrational energy may 
be several times larger than in the stationary case. On the other hand, if the quantum flux 
is expressed in terms of Q(P), then since H ~ [Q(p)]2, the correction factors for the flux 
and the number of quanta on the plateau mutually cancel out, i.e., the rate of dissipation 
does not change in comparison with the stationary case for the same number of quanta on the 
plateau. 

3. Numerical Computatioh of Relaxation. We present the results of a numerical solution 
of the temporal problem of vibrational relaxation of nitrogen molecules at a constant gas 
temperature. The system of equations for the populations of the vibrational levels was solved 
considering single-quantum V--V and V--T processes. The probabilities were specified in the 
form (1.4), (1.5), (2.4) for 6V_ T = 6. The molecule was modeled by a Morse oscillator; the 
magnitude of anharmonicity was determined from the formula AE = ~z/4Do; the experimental val- 
ues of the vibrational quantum~ and the dissociation energy Do were used in this formula. The 
computations were carried out for two values of T -- 0.03 and 0.i eV. The initial distribu- 
tion over the vibrational levels was taken to be the Boltzmann distribution with temperature 
To, whose value was varied. 

The time-dependence of the distribution over the levels and the rate of change of the 
average number of quanta dQ/dt were determined. Examples of distributions are shown in 
Fig. I by the dashed curves for two variants of computation corresponding to T = 0.03 eV, 
Q= 2.15 (curve i) and T = 0.I eV, Q = 1.45 (curve 2) (To = 0.8 eV in both variants). The 
continuous curves in this figure show the stationary distributions computed for the same T 
and Q in accordance with the formulas from [4]. It is evident that the distributions ob- 
tained from the numerical computation decay more slowly in the region of the plateau than 
the stationary distributions, which is in agreement with the results of Sec. 2. Thus, the 
stationary curve I decreases from the beginning to the end of the plateau 1.5 times more than 
the relaxation curve, whereas formula (2.12) gives a value of 1.6 for the corresponding fac- 

tor. 

In the computations with different To but with the same T and Q the distributions and 
the values of dQ/dt are similar. This fact indicates the establishment of a quasistationary 
distribution over the vibrational levels. The time for the establishment of the quasista- 
tionarydistribution is small compared to the characteristic time of vibrational relaxation 
Q(dQ/dt) -I, where Q and dQ/dt correspond to the stationary distribution with the number of 
quanta equal to the initial number. After this time, the average number of quanta does not 
change significantly. ~ 

The dependence of the rate of relaxation on the average number of quanta, obtained from 
the numerical computation for two values of T with To = 0.8 eV, is shown in Fig. 2 (dashed 
curves). The values of the relaxation rate, computed from the formula from [4], are shown 
by the continuous curves (in the investigated range of conditions the difference in the 
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values of dQ/dt determined from the formula from [4] and from (1.6) does not exceed 30%)~ 
Curve I corresponds to T = 0.03, curve 2 to T = 0.05, and curve 3 to T = 0.I eV. It is evi- 
dent that there is a satisfactory agreement. 

Thus, the analytical description of the vibrational relaxation agrees satisfactorily 
with the experiment and numerical computations. 

The authors thank A. Kh. Mnatsakanyan for helpful discussions. 
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w In the intensive investigations being conducted into the properties of molecular 
lasers, and the mechanism and kinetics of gas-phase reactions, there is at present a great 
deal of interest in studying the nonequilibrium distribution function of molecules over the 
vibrational energy levels in systems with sources of particles [i]. Vibrationally excited 
molecules can arise, for example, in the pulsed photolysis of gas mixtures, in the recombi- 
nation of atoms and radicals, in combination and exchange reactions [2], and in electrical 
discharges, optical excitation, etc. 

The problem of determining the populations of the levels is most simply formulated in 
the case when the molecules introduced into the system are characterized by vibrational en- 
ergy E v (pulsed photolysis), and so the source is a ~-function. This situation was studied 
in [3, 4], where the quasistationary distribution function wasobtained corresponding to the 
times TI << t << To (rl is the progressive vibrational relaxation time, and To is the time 
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